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COURSE INTRODUCTION 

 

Abstract algebra is a branch of mathematics that studies algebraic systems in a broad manner. 

Unlike elementary algebra, which deals with specific systems like the real numbers or 

polynomials, abstract algebra focuses on more general structures and their properties.  

 

Abstract algebra is foundational for many areas of mathematics and provides the language and 

framework for many advanced topics in both pure and applied mathematics. The course is of 

four credits and divided into 14 units. There are sections and subsections in each unit. Each unit 

starts with a statement of objectives that outlines the goals we hope you will accomplish.  

 

Course Outcomes: 

 

At the completion of the course, a student will be able to: 

1. Recall the various algebraic structures. 

2. Explain the mathematical objects called groups. 

3. Apply the basic concepts to develop theorems. 

4. Analyze the significance of the notions of cosets, normal subgroups, and factor groups. 

5. Evaluate the fundamental concepts in field theory. 

6. Develop the classification of finite fields. 

 

Acknowledgements: 

 

The content we have utilized is solely educational in nature. The copyright proprietors of the 

materials reproduced in this book have been tracked down as much as possible. The editors 

apologize for any violation that may have happened, and they will be happy to rectify any such 

material in later versions of this book. 
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UNIT - 1 

Preliminaries 

 

Learning objectives 

Understanding Basic Algebraic Structures, gain familiarity with fundamental algebraic 

structures such as groups, rings, and fields. Learn their definitions, properties, and examples. 

 

Structure 

1.1  A Short Note on Proofs  

1.2  Sets and Equivalence Relations  

1.3  Summary 

1.4  Keywords 

1.5  Self Assessment questions 

1.6  Case Study 

1.7  References 

 

1.1 A Short Note on Proofs 

Abstract mathematics is different from other sciences. In laboratory sciences such as 

chemistry and physics, scientists perform experiments to discover new principles and verify 

theories. Although mathematics is often motivated by physical experimentation or by 

computer simulations, it is made rigorous through the use of logical arguments. In studying 

abstract mathematics, we take what is called an axiomatic approach; that is, we take a 

collection of objects S and assume some rules about their structure. These rules are called 

axioms. Using the axioms for S, we wish to derive other information about S by using logical 

arguments. We require that our axioms be consistent; that is, they should not contradict one 

another. We also demand that there not be too many axioms. If a system of axioms is too 

restrictive, there will be few Ex’s of the mathematical structure. 

A statement in logic or mathematics is an assertion that is either true or false. Consider the 

following Ex’s:  

• 3 + 56 − 13 + 8/2.  

• All cats are black.  

• 2 + 3 = 5. 
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1.2 Sets and Equivalence Relations  

Set Theory  

A set is a well-defined collection of objects; that is, it is defined in such a manner that we can 

determine for any given object x whether or not x belongs to the set. The objects that belong 

to a set are called its elements or members. We will denote sets by capital letters, such as A 

or X; if a is an element of the set A, we write a ∈ A. 

 

A set is usually specified either by listing all of its elements inside a pair of braces or by 

stating the property that determines whether or not an object x belongs to the set. We might 

write  

X = {x1, x2, . . . , xn} 

 for a set containing elements x1, x2, . . . , xn or  

X = {x: x satisfies P}. 

 

Examples of Sets 

Some standard sets in mathematics are: 

 

 

All these are infinite sets. But there can be finite sets as well. 

 A = {2, 4, 6, 8} is an EX of a finite set that may be used to represent the collection of even 

natural numbers smaller than 10. 

 

Parts of a Set 

Either elements or members of a set are the objects that make up the set. Curly brackets 

encompass the components of a set, which are separated by commas. '∈' is the symbol 

indicates that an element is contained in the set.  

Ex:- A = {2, 4, 6, 8} 

Here, 2 ∈ A, 4 ∈ A, 6 ∈ A, 8 ∈ A .  
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The sign '∉' is indicate an element that is not a part of the set. 

Ex:  3 ∉ A. i.e. 3 is not a part of the set A. 

 

Cardinality (cardinal number or Number of element) of a Set: 

A set's cardinal number, cardinality, or order indicates how many items there are in total. For 

natural even integers n (A) = 4 that are smaller than 10. A collection of distinct elements is 

referred to as a set. All of a set's elements must be connected to one another and possess a 

common property in order for a set to be defined. For instance, if we establish a set whose 

members are the names of the months in a year, we may state that the months themselves 

make up every element of the set. 

 

Representation of the Sets: 

There are different set notations are used in set theory to represent sets. Each of them has a 

separate set of components. There are three set notations used to represent sets: 

 Roster form 

 Set builder form 

Let us understand each of these forms with an EX. 

 

Table 1.1 : Representation of Sets 

 

Venn diagram for the Visual Representation of Sets 

A Venn diagram is a depiction of sets in which a circle represents each set. The elements of a 

set are included within each circle. There are instances where a rectangle encircled by circles 

is used to symbolize the universal set. The relationships between the given sets are depicted 

in the Venn diagram. 
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Figure 1.1 : Venn diagram 

Sets Symbols 

The components of a particular set are denoted by set symbols. The set theory symbols and 

their meanings are displayed in the following table. 

 

Table 1.2 : Sets Symbols 

 

Types of Sets 

A set in mathematics is a group of unique items that are each regarded as a separate entity. In 

mathematics, sets are basic objects. Here are various types of sets with brief explanations: 
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1. Countable (Finite) Set: A set with a limited number of elements. 

Ex: {1,2,3,4,5} 

2. Uncountable (Infinite) Set: A set having infinite  number of elements. 

Ex: {0, 1,2,3,…} 

3. Void Set (Empty Set or Null Set): A having no elements. 

It is denoted by ― ∅ or {}‖. 

4. Singleton Set: A set with exactly one element. 

Ex: {a} 

5. Subset: The set whose elements are all contained within another set. 

Ex: If              and        , then B is a subset of A. 

6. Proper Subset: A subset that is not equal to the original set (i.e., it contains fewer 

elements). 

Ex: If A={1,2,3}, B={1,2} is a proper subset of A. 

7. Power Set: Power set is the set of all subsets of a given set. 

Ex: A={1,2},  then power set of A is {∅,{1},{2},{1,2}} 

8. Universal Set: The set that contains all the objects under consideration, usually 

denoted by U. 

Ex: If we are considering all natural numbers, then U could be the set of all 

natural numbers. 

9. Complement of a Set: The complement of a set of those elements which are in the 

universal set but are not in the given set. 

Ex: If U =                          then the complement of A is         

10. Union of Sets: A set containing all elements of the given sets. 

Notation: A∪B 

Ex: If A={1,2} and B={2,3}, then A∪B={1,2,3}. 

11. Intersection of two Sets: A set containing only the common elements of the given 

sets. 

Notation: A∩B 

Ex: If                                   

12. Difference of two Sets: A set containing those elements that are in one set but not in 

another. 

Denoted by ― A−B‖ 

Ex: If A={1,2,3} and B={2,3}, then A−B={1}. 
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13. Disjoint Sets: Having no elements in common. 

Ex:                     

14. Equivalent Sets: Sets that have the same number of elements. 

Ex: A={1,2,3} and B={a,b,c} 

15. Equal Sets: Sets that contain exactly the same elements. 

Ex:                           , then A=B. 

16. Cartesian product: The set of all ordered pairs from two sets. 

Denoted by ―A×B‖ 

Ex: If                                                       . 

 

Understanding these types of sets and their properties is fundamental in set theory and 

various areas of mathematics. 

Venn Diagram for Different types of sets 

         

Figure 1.2 : Set A      Figure 1.3 : A’ is the complement of A 

            

Figure 1.4 : Disjoint sets of A and B       Figure 1.5 : B is a Proper subset of A 

                      

       Figure 1.6 : A n B                Figure 1.7 : A U B 

 

In the above figure, the shaded portions in "blue" show the set that they are labelled with. 
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Sets Formulas in Set Theory 

 

 

Laws of Sets 

1. Commutative Law: 

 Union:  ∪    ∪   

 Intersection:         

2. Associative Law: 

 Union:   ∪   ∪    ∪   ∪    

 Intersection:                 

3. Distributive Law: 

 Union over Intersection:  ∪         ∪      ∪    

 Intersection over Union:     ∪         ∪       

4. Identity Law: 

 Union with Empty Set: A∪∅=A 

 Intersection with Universal Set: A∩U=A 

 Union with Universal Set: A∪U=U 

 Intersection with Empty Set: A∩∅=∅ 

5. Idempotent Law: 

 Union:  ∪     

 Intersection:       

6. Complementary Law: 

 Double Complement:               
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 De Morgan's Laws: 

   ∪           

          ∪    

7. Absorption Law: 

  ∪         

     ∪      

8. Complement Laws: 

 A∪A
c
=U 

 A∩A
c
=∅ 

9. Null and Universal Sets: 

 Union with Universal Set: A∪U=U 

 Intersection with Universal Set: A∩U=A 

 Union with Empty Set: A∪∅=A 

 Intersection with Empty Set: A∩∅=∅ 

10. Subset Property: 

If A⊆B, then: 

 A∪B=B 

 A∩B=A 

 

Understanding these properties is essential for working with sets, as they provide the rules for 

how sets interact and how to manipulate them in various mathematical contexts. 

 

1.3 Summary 

"Preliminaries of Abstract Algebra" typically cover foundational concepts and structures 

essential for understanding abstract algebraic systems. Here's a brief summary: 

 Sets and Functions 

 Binary Operations. 

 Groups 

 Subgroups 

 Cosets and Lagrange's Theorem 

 

1.4 Keywords 

Keywords for the preliminaries of abstract algebra typically include: 
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 Sets 

 Functions 

 Binary operations 

 Groups 

 Subgroups 

 Cosets 

 

1.5 Self Assessment Questions 

1. Define a group and list its four defining properties. 

2. Explain what a subgroup is and provide an EX. 

3. What is Lagrange's theorem, and what does it state about the order of subgroups? 

4. Define a normal subgroup and explain its significance in group theory. 

5. Describe what a quotient group is and how it is constructed. 

 

1.6 Case Study 

Cryptography is the practice of secure communication in the presence of adversaries. It relies 

heavily on abstract algebra, particularly group theory, for designing secure cryptographic 

systems. 

Question: Alice and Bob want to communicate securely over an insecure channel, such as 

the internet, without Eve, the eavesdropper, intercepting their messages. 

 

1.7 References 

1. Bhattacharya, P. B., Jain, S. K., & Nagpaul, S. R. (1994). Preliminaries.  
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UNIT - 2 

The Integers 

 

Learning objectives 

 Recognize the fundamentals of mathematical induction as a mathematical proof 

technique.  

 Discover how to use the mathematical induction principle to develop and verify 

claims. 

 Acquire the capacity to discern when the use of mathematical induction to the proof 

of claims is suitable.  

 Recognize number theory's foundational idea—the Division Algorithm.  

 Discover how any number may be expressed as the product of a divisor and a 

quotient, with a remainder, using the Division Algorithm.  

 Examine how to use the Division Algorithm to get an integer's divisibility qualities.  

 

Structure 

2.1  Mathematical Induction 

2.2  The Division Algorithm 

2.3  Summary 

2.4  Keywords 

2.5  Self Assessment questions 

2.6  Case Study 

2.7  References 

 

2.1 Mathematical Induction 

Mathematical induction is a fundamental proof writing technique that may be applied to any 

well-organized collection to prove a given proposition.  

Suppose P(n) is a statement for n natural number then it can be proved using the Principle of 

Mathematical Induction, Firstly we will prove for P(1) then let P(k) is true then prove for 

P(k+1). If P(k+1) holds true. Hence P(n) is true by the principle of mathematical induction. 
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Principle of Mathematical Induction Statement 

Any statement P(n) which is for ―n‖ natural number can be proved using the Principle of 

Mathematical Induction by following the below steps, 

Step 1: Verify if the statement is true for trivial cases (n = 1) i.e. check if P(1) is true. 

Step 2: Assume that the statement is true for n = k for some k ≥ 1 i.e. P(k) is true. 

Step 3: If the truth of P (k) implies the truth of P (k + 1), then the statement P (n) is true for 

all n ≥ 1. 

 

Ex. 1: 

Prove that n
3
 + 2n are always divisible by 3, for any +ve number n. 

Solution: 

Let, P (n): n
3
 + 2n is divisible by 3. 

Step 1: Basic Step 

Firstly we prove that P (1) is true. Let n = 1 in n
3
 + 2n 

= 13 + 2(1)  

= 3 

As 3 is divisible by 3. Hence, P (1) is true. 

Step 2: Assumption Step 

Let us assume that P (K) is true 
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Ex. 2: 

Prove an = a1 + (n – 1) d, is the general term of any arithmetic sequence. 

Solution:  

For n = 1, we have an = a1 + (1 – 1) d = a1, so the formula is true for n = 1, 

Let us assume that the formula ak = a1 + (k – 1) is true for all natural numbers.  

We shall now prove that the formula is also true for k+1, so now we have, 

ak+1 = a1 + [(k + 1) – 1] d = a1 + k · d. 

We assumed that ak = a1 + (k – 1) d, and by the definition of an arithmetic sequence ak+1 – ak 

= d, 

Then, ak +1 – ak  

= (a1 + k · d) – (a1 + (k – 1)d) 

= a1 – a1 + kd – kd + d 

= d 

Thus the formula is true for k + 1, whenever it is true for k. And we initially showed that the 

formula is true for n = 1. Thus the formula is true for all natural numbers. 

 

2.2 The Division Algorithm. 

The division algorithm is a fundamental theorem in arithmetic that provides a way to divide 

integers and express the result in terms of a quotient and a remainder. The formal statement 

of the ―division algorithm‖ is: 

For any integers a and b (with b≠0), there exist unique integers q (the quotient) and r (the 

remainder) such that: a=bq+r where 0≤r<∣b∣. 

Here's how the division algorithm works, broken down into steps: 
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1. Given Integers: Start with two integers a (the dividend) and b (the divisor), where b≠0. 

2. Determine Quotient: Find the largest integer q such that bq≤a. This q is the quotient. 

3. Compute Remainder: Calculate the remainder r by subtracting bq from a: r=a−bq 

4. Check Remainder: Ensure that the remainder rrr satisfies the condition 0≤r<∣b∣. If it 

does, then q and r are the quotient and remainder, respectively. 

Ex. 3: Divide 17 by 5. 

1. Given: a=17, b=5. 

2. Determine Quotient: Find the largest integer q such that 5q≤17. 

 5×0=0 (too small) 

 5×1=5 (too small) 

 5×2=10 (still less than 17) 

 5×3=15 (still less than 17) 

 5×4=20 (too large) 

The largest q that satisfies 5q≤175 is q=3. 

3. Compute Remainder: Calculate r: r=17−5×3=17−15=2 

4. Check Remainder: Ensure 0≤r<5. 

0≤2<5 is true. 

So, the quotient is q=3 and the remainder is r=2. Therefore: 17=5×3+2 

 

Division Algorithm for Polynomials 

The division of polynomials may be expressed as follows using the polynomial division 

method, provided that g(x) ≠ 0 and that p(x) and g(x) are the two polynomials. The formula 

for p x  is q x    g x    r x   where r(x) , here degree of r(x) should be smaller than g(x). 

P(X) is the dividend. 

The divisor is       

This is the quotient, q(x). This is the remainder, r(x). 

Dividend = (Divisor × Quotient) + Remainder.  

 

Ex. 4: 

When the polynomial 4x
3
+ 5x

2
+ 5x + 8 is divided by (4x + 1), find the quotient and the 

remainder, then use the division procedure to confirm the outcome. 
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Solution: 

 

We will now verify the division algorithm. 

p(x) = q(x) × g(x) +1(x) 

4x
3
 +5x

2
+5x+8= (x

2
 + x + 1) (4x + 1) + 7 

4x
3
+5x

2
+5x+8=4x

3
 + 4x

2
 + 4x + x

2
+x+1+7 

4x
3
+5x

2
+5x+8== 4x

3
 + 5x

2
+5x+8 

Thus, the division algorithm is verified. 

 

Procedure to Divide a Polynomial by another Polynomial 

Step 1: Sort the exponents decreasingly by dividend and divisor. 

Step 2: By dividing the highest ―degree term of the dividend by the highest degree term of the 

divisor‖, one may find the first term of the residual. 

Proceed to ―multiply the divisor by the current quotient and deduct the result from the current 

dividend‖. 

Step 3: A new dividend will come from this.  

Step 4: To get the next term of the quotient, ―divide the highest degree term of the new 

dividend obtained in step 3 by the largest degree term of the divisor‖.  

Step 5: Up until the degree of the residual is less than the degree of the divisor, keep 

performing steps 3 and 4.  
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Ex 5: Divide 2x3   3x2   4x   3 by x   1  

 

 

 

2.3 Summary 

 Mathematical induction is a powerful technique used to prove statements about 

integers or sequences. 

 Mathematical induction is often used to prove statements about sums, products, 

divisibility, inequalities, and properties of recursively defined structures. 

 Understanding the Division Algorithm is crucial for various areas of mathematics, 

including number theory, algebra, and cryptography. It provides a systematic way to 

understand the structure of integers and polynomials under division. 

 

2.4 Keywords 

 Mathematical Induction 

 Base Case 

 Inductive Step 

 Induction Hypothesis 
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 Principle of Mathematical Induction 

 Division Algorithm 

 Quotient 

 Remainder 

 Divisor 

 Integer Division 

 

2.5 Self Assessment questions 

1. What is mathematical induction, and how does it operate? 

2. Describe how, when employing mathematical induction, it is crucial to define a base case. 

3. Explain how a demonstration by mathematical induction works at the inductive phase. 

4. Describe the Division Algorithm and the importance of number theory to it. 

5. How are the main elements of the Division Algorithm connected to one another? 

6. Describe how to divide two numbers using the Division Algorithm with an EX.  

 

2.6 Case Study 

Using an unreliable channel, Alice and Bob wish to put in place a secure communication 

system. To protect the secrecy and integrity of their communications, they choose to employ 

cryptographic methods grounded in mathematical concepts. 

Question: To protect against adversarial assaults, they must set up a secure key exchange 

mechanism and encryption system. 

 

2.7 References 

1. Rosen, K. H. (2011). Discrete Mathematics and Its Applications (7th ed.). McGraw-

Hill Education. 

2. Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete Mathematics: A 

Foundation for Computer Science. Addison-Wesley. 

3. Hardy, G. H., & Wright, E. M. (2008). An Introduction to the Theory of Numbers (6th 

ed.). Oxford University Press. 
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UNIT – 3 

Groups 

 

Learning objectives 

A basic field of study with numerous applications in mathematics and other fields, group 

theory is a subfield of abstract algebra. When studying group theory, the following are typical 

learning goals: 

 Understanding Groups 

 Group Operations 

 Subgroups 

 Group Homomorphisms 

 Isomorphism 

 

Structure 

3.1  Integer Equivalence Classes and Symmetries  

3.2  Definitions and Examples 

3.3  Sub-groups  

3.4  Summary 

3.5  Keywords 

3.6  Self Assessment questions 

3.7  Case Study 

3.8  References 

 

3.1 Integer Equivalence Classes and Symmetries  

The Integers mod � 

In algebraic theory and applications, the integers mod � have become a crucial component. 

They are utilized in the fields of mathematics in coding theory, cryptography, and error 

detection in identifying codes. 

It is well known that if n divides �−�, then two numbers, a and b, are identical mod n. 

Additionally, the integers mod n divide � into � distinct equivalency classes; we will refer to 

the collection of these equivalency classes as ��. Examine the numbers modulo 12 and the 

associated division of the numbers: 
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The equivalency classes [0], [1],…, [11] will be denoted by 0,1,…,11, correspondingly, when 

there can be no doubt about it. Arithmetic on �� is possible. Define addition modulo n for 

two numbers, a and b, as (a+b) (mod�), or the residual obtained by dividing b by �. In a 

similar vein, multiplication modulo n is expressed as (��)(mod�), or the residual obtained 

from dividing �� by �. 

 

Ex 1: 

The subsequent instances demonstrate integer arithmetic modulo �: 

7+4≡1 (mod5)  7⋅ 3≡1 (mod5) 

3+5≡0 (mod8)  3⋅ 5≡7 (mod8) 

3+4≡7 (mod12) 3⋅ 4≡0 (mod12). 

Solution 

Specifically, take note that the product of two nonzero values modulo � may equal 0 modulo 

n. 

 

Proposition: 

Let �� be the set of equivalence classes of the integers mod � and �,,∈��.‖ 

1. “Addition and multiplication are commutative:” 

�+�≡�+� (mod �) 

��≡�� (mod �). 

2. Addition and multiplication are associative: 

(�+�)+�≡�+ (�+�) (mod �) 

(��)�≡� (��) (mod �). 
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3. There are both additive and multiplicative identities: 

 

4. Multiplication distributes over addition: 

(�+�)≡��+ (mod �). 

5. For every integer � there is an additive inverse −�: 

�+ (−�) ≡0 (mod �). 

 

3.2 Definitions and Examples 

Definitions 

 

 

Examples 

A group is (Z,+). Addition is associative, the identity is 0, and the inverse of a ΄ Z is -a. Both 

complex and real numbers using the binary operator + create groups equally. However, the 

natural numbers N that have the operation + do not form a group, and neither does (Z,-).  

Solve 1-(2-3) as well as (1-2)-3. The binary operation -- isn't associative on Z because of their 

differences. 

"The" unimportant group. Since there is only one binary operation on a one element set, let 

G={e} be a one element set, and let be the binary operation on G defined by e*e=e. Then, the 

trivial group is a group denoted by (G,*).  

 

3.3 Sub-groups  

Assume that G is a group and that the operation is multiplication (or addition, depending on 

the situation). If a subset H of G forms a group under the same operation as G, then H is 
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termed a subgroup of G. In other words, H fulfills the identity element, closure, associativity, 

and inverses group axioms. 

 

Ex 2 : 

 In the additive group of integers (Z,+), the set of even integers is a subgroup because 

it is closed under addition, contains the identity element 0, and each element has its 

inverse in the set. 

 In the multiplicative group of non-zero rational numbers (Q∗ ,⋅ ), the set of positive 

rational numbers is a subgroup. 

 

Proper Sub-group: A subgroup H of a group GGG is considered proper if H is not equal to 

G itself. 

 

Generating Sub-groups: A subgroup generated by a subset S of a group G is the smallest 

subgroup of G containing all elements of S. It consists of all possible finite products and 

inverses of elements in S. 

 

3.4 Summary 

Mathematical entities called groups are made up of a set and an operation. Group theory is a 

subfield of abstract algebra that studies groups. 

 Definition of Groups 

 EXs of Groups 

 Subgroups 

 

3.5 Keywords 

Keywords of group theory encompass its fundamental concepts, techniques, and applications. 

Here's a list: 

 Group 

 Subgroup 

 Homomorphism 

 Isomorphism 

 Coset 
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3.6 Self Assessment questions 

1. Describe a group and the four requirements that it has to meet.  

2. Give two and three group instances, illustrating both finite and infinite groups. 

3. Define a subgroup. Give an instance.  

4. State and describe the Lagrange theorem. In group theory, how is it useful?  

5. Describe how two groups are homomorphic. Give an instance.  

 

3.7 Case Study 

Public-key cryptography altered the way secure communication is carried out by introducing 

asymmetric encryption for the first time. Whereas symmetric encryption uses a single secret 

key shared by both parties, public-key cryptography uses a pair of keys: a public key for 

encryption and a private key for decryption. Group theory forms a substantial part of the 

mathematical foundations of public-key cryptography. 

 

3.8 References 

1. Dummit, D. S., & Foote, R. M. (2004). Abstract algebra. Wiley. 

2. Robinson, D. J. S. (1996). A course in the theory of groups (2nd ed.). Springer. 
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Unit – 4 

Cyclic group 

 

Learning objectives 

Studying cyclic groups usually has the following learning goals:  

 Recognizing the Definition 

 Recognizing Groups that Cycle  

 Cyclic Group Properties  

 Producers and Commands  

 Utilizations and Illustrations  

 

Structure 

4.1  Cyclic Subgroups 

4.2  Multiplicative Group of Complex Numbers 

4.3  Summary 

4.4  Keywords 

4.5  Self Assessment questions 

4.6  Case Study 

4.7  References 

 

4.1 Cyclic Subgroups 

A cyclic subgroup of a group is a subgroup that is ―generated by a single element‖, called a 

generator. More formally: 

Given a group G and an element g in G, the cyclic subgroup generated by g, denoted ⟨ g⟩ , is 

the smallest subgroup of G that contains g. 

In other words, ⟨ g⟩  consists of all powers of g and their inverses, along with the identity 

element of the group. Symbolically: 

  

  

Ex 1. Assume that we examine all multiples of 3 (positive and negative), taking into account 

that 3 ∈  Z. This is represented as a set by 3Z = {..., −3, 0, 3, 6,...}. That 3Z is a subgroup of 

the integers is evident. Since all other group elements may be obtained by taking multiples of 



23 
 

3, element 3 determines this subgroup entirely. Three "generates" each element in the 

subgroup.  

 

Ex 2. The multiplicative group of nonzero rational numbers, Q∗ , has H as a subgroup if H = 

{2^n: n ∈  Z}. H contains ab−1 = 2m2 −n = 2m−n if a = 2^m and b = 2^n. The element 2 

determines a subgroup of Q∗  by H. 

 

Theorem 4.1  

Assume that a is any element of the group G. Then, a subgroup of G is the set 〈a〉 = {a
 k

: k ∈  

Z}. Moreover, the smallest subgroup of G that includes an element is 〈 a〉 .  

 

Proof. The identity is in (a) since a 0 = e. If g and h are any two elements in (a), then by the 

definition  we can write g = am and h = a n for some integers m and n. So gh = a
m

 a
n
 = a

m÷n
 is 

again in (a). Finally, if g = a
n
 , then the inverse g −1 = a

-n
 is also in (a). Clearly, any subgroup 

H of G containing a must contain all the powers of a by closure; hence, H contains (a). 

Therefore, (a) is the smallest subgroup of G containing a. 

 

4.2 Multiplicative Group of Complex Numbers 

 

 

4.3 Summary 

A cyclic group is a fundamental concept in abstract algebra, characterized by being generated 

by a single element. 
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4.4 Keywords 

 Cyclic Group  

 Generator. 

 Order 

 Subgroup 

 Finite 

 Infinite 

 

4.5 Self Assessment questions 

1. Define a cyclic group and explain what it means for a group to be cyclic. 

2. What is a generator in the context of cyclic groups? Provide an EX of a generator in a 

specific cyclic group. 

3. Consider the group of integers under addition Z. Is this group cyclic? If so, what is a 

generator for this group? 

4. True or False: Every subgroup of a cyclic group is cyclic. Justify your answer. 

5. Determine the order of the cyclic subgroup generated by g=3 in the group     

(integers modulo 10 under addition). 

 

4.6 Case Study 

Web applications often require users to authenticate themselves before accessing sensitive 

information or performing certain actions. One common method of authentication involves 

the use of authentication tokens, which are small pieces of data that serve as proof of the 

user's identity. Cyclic groups can be utilized to create secure authentication tokens that are 

resistant to tampering and forgery. 

 

Question: Consider a web application that allows users to access their personal accounts 

after logging in with a username and password. To enhance security, the application 

implements authentication tokens using cyclic group-based cryptography. 

 

4.7 References 

1. Dummit, D. S., & Foote, R. M. (2004). Abstract algebra. Wiley. 

2. Robinson, D. J. S. (1996). A course in the theory of groups (2nd ed.). Springer. 
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Unit - 5 

Permutation groups 

 

Learning objectives 

The learning objectives of studying permutation groups typically include: 

 Understanding Permutations. 

 Definition of Permutation Groups 

 Cyclic Notation 

 Properties of Permutation Groups 

 Cayley's Theorem 

 

Structure 

5.1  Definitions and Notations 

5.2  Dihedral Groups  

5.3  Summary 

5.4  Keywords 

5.5  Self Assessment questions 

5.6  Case Study 

5.7  References 

 

5.1 Definitions and Notations 

A permutation is a one-to-one onto mapping to itself that looks like this: let G be a non-

empty set.  

 The degree of permutation is the total number of elements in a finite set G.  

  If G has n items, then P is referred to as the set of all n-degree permutations.  

  The Symmetric group of degree n is another name for Pn.  

 Additionally, Sn represents Pn.  

 

Reading the Symbol of Permutation 

Suppose that a permutation is 

. 
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Initially, we see that two rows with numbers are printed in a little bracket. One is the smallest 

number and six is the greatest. We start with the left side of the first row, which reads as 

follows: image of 1 is 2, image of 2 is 3, image of 3 is 1, image of 4 is 4, image of 5 is 6, and 

image of 6 is 5. It is also possible to write the above as follows: 1. Starting from the left side 

of the first row, 2 moves to 3, 2 moves to 4, 3 moves to 5, 4 moves to 6, then 6 moves to 5.  

A two-length cycle is called a permutation.  

 

5.2 Dihedral Groups  

The dihedral group of order 2n, denoted Dn or D2n, is the group of symmetries of a regular n-sided 

polygon. It has 2n elements: n rotations and n reflections. 

 

The group �� consists of 2� elements, which can be depicted as follows: 

 n rotations, denoted by R0, R360/n, R(360)(2)/n..., R(n−1)360/n, where ��(360)/�  represents a 

rotation of (360i/n)(360�/�) degrees clockwise about the center of the polygon. 

 n reflections, denoted by ―F0,F1,F2,...,F(n−1),‖ where � represents a reflection of a line 

passing through the center of the polygon and one of its vertices. 

 

Ex 1: 

The symmetric group of a regular pentagon is called the �5 dihedral group of order 10. Ten 

components make up this structure, which can be seen as pentagon rotations and reflections.  

The �5 Cayley table:  
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5.3 Summary 

A fundamental mathematical idea in group theory and combinatory is a permutation group. A 

composition of permutations constitutes the group operation of a permutation group, which is 

a group whose members are permutations of a set. Bijective mappings known as permutations 

are used to rearrange a set's elements. 

There are two ways to express permutations: disjoint cycle notation, in which every cycle is a 

permutation, and cycle notation, in which components are moved cyclically.  

The group that is symmetric The group of all n element permutations is denoted by Sn. It is 

widely used in group theory and combinatory as a basic EX of a permutation group.  

Order, cycle structure, and cycle durations are only a few of the characteristics of permutation 

groups. Comprehending these attributes facilitates the examination of the configuration and 

conduct of permutation groups. 

 

5.4 Keywords 

 Permutation Group 

 Permutation 

 Symmetric Group 

 Cycle Notation 

 Cycle Structure 

 Order 

 Generators 

 

5.5 Self Assessment questions 

1. Define a permutation group and explain what it means for a group to be a permutation 

group. 

2. Consider the ―symmetric group S4‖, which consists of all permutations of the set {1, 

2, 3, 4}. What is the order of this group? 

3. Explain the concept of cycle notation for permutations and provide an EX of how to 

represent a permutation in cycle notation. 

4. True or False: Every permutation group is finite. Justify your answer. 

5. Consider the permutation σ= (1 2 3) (4 5) in S5. What is the order of σ? 
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5.6 Case Study 

In computer security, Role-Based Access Control (RBAC) is a widely used model for 

managing access to resources within an organization. RBAC assigns permissions to users 

based on their roles, rather than directly assigning permissions to individual users. 

Permutation groups can be utilized to represent and manage RBAC policies efficiently. 

 

Question: Consider a large organization with multiple departments, each containing various 

employees with different roles and responsibilities. The organization wants to implement an 

RBAC system to manage access to sensitive information and resources. 

 

5.7 References 

1. Dummit, D. S., & Foote, R. M. (2004). Abstract algebra. Wiley. 

2. Robinson, D. J. S. (1996). A course in the theory of groups (2nd ed.). Springer. 
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Unit – 6 

Cosets and Lagrange’s Theorem 

 

Learning objectives 

When learning about cosets and Lagrange's theorem in group theory, the following are 

usually the learning objectives:  

 Comprehending Cosets 

 Lagrange Theorem 

 Use Cases  

 Explanations in general  

 Verification Methods  

 

Structure 

6.1  Cosets 

6.2  Lagrange’s Theorem 

6.3  Summary 

6.4  Keywords 

6.5  Self Assessment questions 

6.6  Case Study 

6.7  References 

 

6.1 Cosets 

Definition  

 

 

We write �:� for the set of left cosets of H by elements of G  

so  :�={��:�∈�}, and |�:�| use for its size.  

Similarly, we write �:� is the set of right cosets of the set H by elements of G. 
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Ex : 

 

 

6.2 Lagrange’s Theorem 

Theorem (Lagrange’s Theorem)  

Let G be a finite group and let H be a subgroup. Then |�|=|�:�||�|=|�:�||�|. In particular, 

the order of H divides the order of G. 

 

Proof.  

Let the distinct left cosets of H in G be �1�,…,�, so �=|�:�|.  The left cosets of H are the 

equivalences classes for an equivalence relation ∼ on G. Therefore they are a partition of G, 

and |�|=|�1�|+⋯+|���|. Since |giH|=|H| by Lemma we get |�|=�|�|=|�:�||�|. The result 

for right cosets is similar. 

Or 

Let H be any subgroup with an order 'n' of a finite group G of order m. Let us consider the 

coset breakdown of G with respect to H. Now considering that each coset of aH comprises n 

different elements. 

 

Let H = {h1, h2… hn}, then ah1, ah2… ahn are the n number of distinct members of aH. 

 

Suppose, ahi=ahj⇒hi=hj be the cancellation law of G. Now G is a finite group, so the number 

of discrete left cosets will also be finite, say p. So, the total number of elements of all cosets 

is np which is equal to the total number of elements of G. Hence, m=np 

p = m/n 
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This shows that n, the order of H, divides m i.e., is a divisor of m, the order of the finite 

group G. We also see that the index p is also a divisor of the order of the group. 

Hence, proved, |G| = |H| 

 

6.3 Summary 

Basic ideas in group theory, a subfield of abstract algebra, include cosets and Lagrange's 

Theorem. Cosets allow a group to be divided into discrete subsets, and Lagrange's theorem 

provides a basic correspondence between the orders of subgroups and the parent group's 

order. This theorem is fundamental to algebraic structures, with wide applications ranging 

from group theory and other fields. 

 

6.4 Keywords 

 Coset 

 Left Coset 

 Right Coset 

 Partition 

 Index 

 Lagrange's Theorem 

 

6.5 Self Assessment questions 

1. Define a left coset and a right coset of a subgroup H in a group G.  

2. Explain how cosets partition a group and discuss whether two cosets can overlap.  

3. Compute left and right cosets of a given subgroup in a specific group. 

4. State Lagrange's theorem and explain its significance in group theory.  

5. Apply Lagrange's theorem to determine the possible orders of subgroups in a finite 

group. 

 

6.6 Case Study 

In modern cryptography, understanding the structure of finite groups is crucial for designing 

secure encryption algorithms. Lagrange's theorem plays a significant role in analyzing the 

security and efficiency of cryptographic protocols. 
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Question: A group of cryptographers is tasked with designing a new cryptographic algorithm 

based on group theory principles. They want to ensure that the algorithm is secure and 

resistant to attacks based on mathematical properties of groups. 

 

6.7 Reference 

1. Dummit, D. S., & Foote, R. M. (2004). Abstract algebra. Wiley. 

2. Robinson, D. J. S. (1996). A course in the theory of groups (2nd ed.). Springer. 
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Unit - 7 

Isomorphism 

 

Learning objectives 

 The idea of isomorphism is used in many disciplines, including chemistry, computer 

science, and mathematics.  

 Recognize the meaning of isomorphism across vector spaces, fields, rings, groups, and 

graphs, among other mathematical structures. 

  Discover the formal methods for demonstrating the isomorphism of two structures.  

 Examine the characteristics of order, structure, and algebraic features that are maintained 

under isomorphism.  

  Solve issues in graph theory, linear algebra, abstract algebra, and other areas of 

mathematics by using the idea of isomorphism.  

 Know the importance of isomorphism in representation and modeling of mathematics.  

 

Structure 

7.1  Definition 

7.2  Direct Products  

7.3  Summary 

7.4  Keywords 

7.5  Self Assessment questions 

7.6  Case Study 

7.7  References 

 

7.1 Definition  

An isomorphism is a mapping from one set to another in modern algebra that conserve the 

binary associations between the elements of the sets. The set of natural numbers can be 

transfer onto the set of even natural numbers, for EX, by multiplying each natural number by 

two. 

 

Let A and B be two sets with elements an and bm. 
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Then ―*‖ denote the corresponding binary operations, which act on any two members a set. 

The sets are isomorphic and f and its inverse are isomorphisms if there is a mapping f such 

that f(aj * ak) = f(aj) * f(ak) and its inverse mapping f
-1 

such that f
-1

(br * bs) = f
 -1

(br) — f 
-1

(bs). 

 

If the both sets A and B are the same, then f is called an automorphism. 

 

7.2 Direct Products  

In my book, I have a theorem that says the following: 

Let � be a group. If �1, 2 are subgroups such that: 

 �1,�2⊲� 

 �1�2=� 

 �1∩�2={��} 

Then �≅�1×�2 

 

Later, there is a remark that says that the converse of the theorem also holds. So, I suppose 

this means, that if we have that �≅�1×�2 for subgroups �1,2, then the three conditions listed 

above hold. 

 

The 'proof' goes as follows: 

If �=�1×�2, then �=�1�2 with  1=�1×{��2} and H2 ={��1}×�2. The groups �1,2 are 

normal in � and �1∩�2={�} 

 

7.3 Summary 

A term Isomorphism used in several fields, such as computer science, chemistry, and 

mathematics. Fundamentally, isomorphism characterizes a structural resemblance between 

two things in which despite variations in representation or appearance, the fundamental 

characteristics and connections between them stay the same. 

  

In mathematics, mappings between mathematical structures like groups, rings, and graphs are 

common EXs of isomorphism. A bijective mapping between two structures is said to be 

isomorphic if it maintains the essential characteristics and connections between them. 
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7.4 Keywords 

 Structure-preserving mappings 

 Mathematical structures 

 Graphs, networks 

 Bijective mapping 

 Algebraic properties 

 

7.5 Self Assessment questions 

1. Define isomorphism and explain its significance in mathematics. 

2. What are the key properties preserved under isomorphism between mathematical 

structures? 

3. Provide EXs of isomorphic structures in mathematics, such as groups, rings, or 

graphs. 

4. How do you formally prove that two mathematical structures are isomorphic? 

5. Explain how the concept of isomorphism is applied in computer science, particularly 

in the context of data structures and algorithms 

 

7.6 Case Study 

A multinational corporation (MNC) operates in multiple countries and relies heavily on its 

network infrastructure for communication, data transfer, and collaboration. Ensuring the 

security of its network infrastructure is paramount to protect sensitive corporate data and 

maintain business continuity. 

 

Question: The MNC faces the challenge of securely transmitting sensitive data between its 

branches offices located in different countries. Traditional encryption methods are not 

sufficient due to the diverse regulatory requirements and potential vulnerabilities associated 

with centralized encryption systems. Fomulate. 

 

7.7 References 

1. Dummit, D. S., & Foote, R. M. (2004). Abstract algebra. Wiley. 

2. Robinson, D. J. S. (1996). A course in the theory of groups (2nd ed.). Springer. 
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CHAPTER- 8 

Normal Subgroups and Factor Groups 

 

Learning objectives 

 Understand the difference between a normal subgroup and a subgroup. 

 Explore the properties of normal subgroups, such as closure under conjugation by 

elements of the group. 

 Explore the properties of quotient groups, including the group operation and the 

relationship between elements of the quotient group and cosets. 

 

Structure 

8.1  Factor Groups and Normal Subgroups  

8.2  The Simplicity of the Alternating Group  

8.3  Summary 

8.4  Keywords 

8.5  Self-Assessment questions 

8.6  Case Study 

8.7  References 

 

8.1 Factor Groups and Normal Subgroups 

Let � be a group and � its normal subgroup. Now, let � be a subgroup of �/�. To prove 

that �=�/� for some subgroup � of � that contains �. 

 

Given a normal subgroup �, we have the canonical projection �:�→�/�. Let � be a 

subgroup of �/�. Then �=�
−1

 (�) is a subgroup of �. �∈�, hence �
−1

 (�) =�⊆�. 

So, � is a normal subgroup of �. 

 

Ex 1: 

If � be an abelian group the prove that Every subgroup � of � is a normal subgroup. 

Solution 

We know,  ℎ=ℎ� for all �∈� and ℎ∈�,  

Then,  gH=Hg. 
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Theorem  

Let N be a normal subgroup of a group G. The cosets of N in G form a group G/N of order  

[G: N]. 

Proof 

Here we use G /N, the group operation is (aN)(bN)=abN. Group multiplication must be 

demonstrated to be well-defined, meaning it must be unaffected by the selection of a coset 

representative. Given cN=dN and aN-bN. We have to demonstrate that. 

 

 

8.2 The Simplicity of the Alternating Group  

Zp is the class of all simple group instances when p is prime. Since these groups don't have 

any appropriate subgroups other from the identity-only subgroup, they are trivially simple. It 

is more difficult to locate other instances of simple groupings. On the other hand, for n≥5, we 

can demonstrate that the alternate group, An, is simple.  

Lemma  

Prove that the alternating group A is generated by 3- cycles for n≥3 

Proof 

First of all take 3-cycles lead to An. 

Since (a, b) = (b,a) 

(a, b)(a,c)=identity 

= (a, c, b) (a, c, d) 

= (a, c, b). 

 

8.3 Summary 

Normal subgroups and quotient groups are powerful tools in group theory, providing a framework for 

understanding group structure and symmetries. They have applications across various fields of 
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mathematics and play a crucial role in theoretical and applied research. Understanding these concepts 

is essential for students and researchers in algebra, cryptography, and related areas of mathematics. 

 

8.4 Keywords 

 Subgroup 

 Conjugation 

 Invariant 

 Quotient group 

 Coset 

 Factorization 

 

8.5 Self-Assessment questions 

1. What is a normal subgroup? 

2. How do you determine if a subgroup is normal in a group? 

3. Define the factor group (or quotient group). 

4. What role does a normal subgroup play in the formation of a factor group? 

5. Explain the significance of cosets in the context of factor groups. 

6. What is the relationship between the order of a normal subgroup and the order of the factor 

group? 

7. State and explain Lagrange's theorem as it relates to factor groups. 

8. How are factor groups used to study the structure of a group? 

9. Can you provide an EX of a normal subgroup and its corresponding factor group? 

10. What is the significance of the isomorphism theorems in the context of factor groups? 

 

8.6 Case Study 

Normal subgroups and factor groups are fundamental concepts in abstract algebra, playing a 

pivotal role in understanding group structure and symmetry. This case study explores their 

significance through an EX in the context of group theory. 

Consider the dihedral group �6, the group of symmetries of a regular hexagon. Let �denote a 

clockwise rotation by �/3 and�denote a reflection across a diagonal. We will examine the 

normal subgroups and factor groups of �6 to gain insights into its structure. 

 

8.7 References 

1. Dummit, D. S., & Foote, R. M. (2004). Abstract Algebra (3rd ed.). Wiley. 

2. Herstein, I. N. (2003). Topics in Algebra (2nd ed.). Wiley. 
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Unit - 9 

Homomorphism 

 

Learning objectives 

 Understand the key properties of  homomorphisms, such as preserving the group operation. 

 Explore how homomorphisms arise in different mathematical structures, such as rings, fields, 

and vector spaces. 

 Explore conditions under which a homomorphism is injective or surjective. 

 

Structure 

9.1  Group Homomorphisms  

9.2  The Isomorphism Theorems  

9.3  Summary 

9.4  Keywords 

9.5 Self-Assessment questions 

9.6  Case Study 

9.7  References 

 

9.1 Group Homomorphisms 

A group homomorphism; is a function between two groups that respects the group structure. 

Specifically, if th binary composition of two sets (G,&) and (H,∗ ) are groups, then a function 

ϕ:G→H  is called a homomorphism if for all a,b∈G: ; 

ϕ(a&b)=ϕ(a)∗ ϕ(b) 

i.e. image ;of the product of two elements under the composition of  homomorphism is equal 

to the product of the images of the two elements. ; 

 

Properties 

1.  Preservation of Identity: A group homomorphism maps the identity element of G to the 

identity element of HHH. If eG is the identity in G and eH is the identity in H, then 

ϕ(eG)=eH. 

2. Preservation of Inverses: A group homomorphism maps inverses to inverses. For every 

a∈G, 
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Examples 

1. Trivial Homomorphism: The map ϕ:G→H defined by ϕ(g)=eH  for all g∈Gg is a 

homomorphism. This is called the trivial homomorphism. ; 

2. Identity Homomorphism: The map ―ϕ:G→G ―defined by ϕ(g)=g for all g∈G is a; 

homomorphism is called the identity homomorphism. ; 

3. Inclusion Homomorphism: If H is a subgroup of G, the inclusion map ι:H→G 

defined; by ι(h)=h for all h∈H is a homomorphism. ; 

4. Determinant: The determinant function det:GL(n,R)→R
∗

, where GL(n,R) is the 

group of n×n invertible matrices with real entries, is a homomorphism. ; 

 

9.2 The Isomorphism Theorems 

Let � be a group. Let �◃�. Then a natural homomorphism exists from � to �/�, given 

by �↦��. 
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9.3 Summary 

Homomorphism  are fundamental tools in algebraic structures, providing a way to study and 

compare different objects based on their algebraic properties. They help reveal the underlying 

structure and symmetries of mathematical systems, leading to deeper insights and discoveries 

in mathematics and its applications. 

 

9.4 Keywords 

 Group Theory 

 Kernel 

 Injective 

 Surjective 

 Isomorphism 

 

9.5 Self-Assessment questions 

1. What is a homomorphism in abstract algebra? 

2. How does a homomorphism preserve the group operation? 
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3. Define the kernel of a homomorphism. 

4. What is the significance of the image of a homomorphism? 

5. Explain the difference between an injective and a surjective homomorphism. 

6. What is an isomorphism between groups? 

7. State the First Isomorphism Theorem and its significance. 

8. Can you provide an EX of a homomorphism between two groups? 

9. How do homomorphisms relate to quotient groups? 

10. In what other mathematical structures are homomorphisms defined, besides groups? 

 

9.6 Case Study 

In cryptography, secure multiparty computation allows multiple parties to jointly compute a 

function over their private inputs without revealing these inputs to each other. Homomorphic 

encryption enables computations to be performed on encrypted data without decrypting it, 

making it an essential tool for MPC protocols. 

 

Consider a scenario where several voters wish to conduct a private election without revealing 

their votes to anyone else. Homomorphic encryption can be used to achieve this while 

ensuring the integrity and confidentiality of the voting process. 

 

9.7 References 

1. Gentry, C. (2009). A Fully Homomorphic Encryption Scheme. Stanford University. 

2. Paillier, P. (1999). Public-Key Cryptosystems Based on Composite Degree 

Residuosity Classes. 
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Unit - 10 

Matrix Groups and Symmetry 

 

Learning objectives 

 Explore the properties of matrix groups, including closure, associativity, identity element, and 

inverse element. 

 Understand how these properties are verified in the context of matrix operations. 

 Investigate specific applications of matrix groups in geometry, physics, and other fields. 

 

Structure 

10.1  Matrix Groups  

10.2  Symmetry  

10.3  Summary 

10.4  Keywords 

10.5  Self-Assessment questions 

10.6  Case Study 

10.7  References 

 

10.1 Matrix Groups 

A group where the elements are square matrices, the group inverse is just the matrix inverse, 

and the group multiplication law is matrix multiplication. A unitary matrix group is the same 

as any other matrix group. 

Prior to studying matrix groups, we need to review some fundamental concepts from linear 

algebra. A linear transformation is among the most basic concepts in linear algebra.  

 

A linear transformation or linear map T: R
n
→R

m
  is a mapping  of vector addition and 

scalar multiplication; i.e. vectors x and y in R
n
 and a scalar aЄR, 

T x  y  T x  T y  

T ay    aT y   

An m x n matrix with entries in R represents a linear transformation from R
n
 to R

m
. If we 

write vectors x = (x1, ..., Xn) and y = (yı …….,Yn) in R
n
 as column matrices, then an m × n 

matrix 
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Key Types of Matrix Groups: 

1. General Linear Group GL(n,F): 

 The general linear group GL(n,F) is the group of all invertible n×n 

matrices with entries from a field F. 

 Notation: GL(n,F) 

 Properties: The set of all n×n invertible matrices under matrix 

multiplication. 

GL(n,F)={A∈M(n,F)∣ det(A)≠0} 

where M(n,F) denotes the set of all n×n matrices over F. 

2. Special Linear Group SL(n,F): 

 The special linear group SL(n,F) is the subgroup of GL(n,F) consisting of 

matrices with determinant equal to 1. 

 Notation: SL(n,F) 

 Properties: The set of all n×n matrices with determinant 1. 

SL(n,F)={A∈GL(n,F)∣ det(A)=1} 

3. Orthogonal Group O(n)O(n)O(n): 

 The orthogonal group O(n) is the group of n×n orthogonal matrices. 

 Notation: O(n) 

 Properties: A matrix A is orthogonal if A
T
    , where A

T
 is the 

transpose of A and I is the identity matrix. 

O(n)={A∈GL(n,R)∣  AT
A=I} 

4. Special Orthogonal Group SO(n): 

 The special orthogonal group SO(n) is the subgroup of O(n) consisting of 

matrices with determinant equal to 1. 
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 Notation: SO(n) 

 Properties: The set of all n×n orthogonal matrices with determinant 1. 

SO(n)={A∈O(n)∣ det(A)=1} 

5. Unitary Group U(n): 

 The unitary group U(n) is the group of n×n unitary matrices. 

 Notation: U(n) 

 Properties: A matrix A is unitary if A∗ A=I, where A∗  is the conjugate 

transpose of A. 

U(n)={A∈GL(n,C)∣ A∗ A=I} 

6. Special Unitary Group SU(n): 

 The special unitary group SU(n) is the subgroup of U(n) consisting of 

matrices with determinant equal to 1. 

 Notation: SU(n) 

 Properties: The set of all n×n unitary matrices with determinant 1. 

SU(n)={A∈U(n)∣ det(A)=1} 

 

10.2 Symmetry 

An isometry or rigid motion in R
n
 is a distance- preserving function f from R

n
 to R

n
. This 

means that ƒ must satisfy ||f(x)-f(y)||=||x-y|| for all x, y Є R". It is not difficult to show that ƒ 

must be a one-to-one map. By Theorem, any element in (n) is an isometry on R
n
; however, 

(n) does not include all possible isometries on R
n
. Translation by a vector x, (x)=x+y is also 

an isometry; however, T cannot be in O(n) since it is not a linear map. ; 

 

Our main focus is on isometries in R
2
. As a matter of fact, the only isometries in R

2
 are the 

translations, combinations, and rotations and reflections about the origin. For EX, a glide 

reflection is a translation followed by a reflection (Figure 10.1). In R
n
 all isometries are given 

in the same manner. The proof is very easy to generalize. 
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Figure 10.1 Glide reflections 

 

A symmetry group in R
n
 is a subgroup of the group of isometries on R

n
 that fixes a set of 

points X    R
n
. It is important to realize that the symmetry group of X depends both on R

n
 

and on X. For EX, the symmetry group of the origin in R
1
 is Z2, but the symmetry group of 

the origin in R
2
 is O(2). 

 

10.3 Summary 

Matrix groups and their applications to symmetry form a fundamental area of study in 

mathematics and physics. By understanding these groups, we gain insights into the structural 

and transformational properties of various systems, from geometric shapes to fundamental 

particles in the universe. This knowledge is crucial for advancements in both theoretical and 

applied sciences. 

 

10.4 Keywords 

1. General Linear Group GL(n,  ) 

2. Special Linear Group SL(n,  ) 

3. Orthogonal Group O(n) 

4. Special Orthogonal Group SO(n) 

5. Unitary Group U(n) 

 

10.5 Self-Assessment questions 

1. What is a matrix group? 

2. Give an Ex of a matrix group and its application in real-world symmetry. 

3. Define the special orthogonal group(3). What does it represent? 
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4. How do matrix groups preserve symmetry in geometric objects? 

5. Explain the significance of determinants in matrix groups like (�, )and��(�, ). 

6. What role do unitary matrices play in describing symmetries in quantum mechanics? 

7. How does representation theory relate to matrix groups and symmetries? 

8. What is the difference between a Lie group and a Lie algebra? 

9. Give an EX of a group action involving a matrix group and its effect on a geometric 

object. 

10. Why are matrix groups important in studying physical symmetries? 

 

10.6 Case Study 

Crystallography is the study of the arrangement of atoms in crystalline solids. Matrix groups 

play a crucial role in describing the symmetries found in crystal structures, providing insights 

into their physical and chemical properties. 

 

Crystals exhibit various symmetrical properties due to the repeating arrangement of atoms. 

Matrix groups help characterize these symmetries, which impact the crystal's physical, 

mechanical, and optical behavior. 

 

10.7 References 

1. Arfken, G. B., Weber, H. J., & Harris, F. E. (2012). Mathematical Methods for 

Physicists (7th ed.). Academic Press. 

2. Hall, B. C. (2015). Lie Groups, Lie Algebras, and Representations: An 

Elementary Introduction (2nd ed.). Springer. 
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Unit - 11  

The structure of Groups 

 

Learning objectives 

 Identify and understand Ex’s of groups: Recognize EXs of groups, including familiar 

groups like integers under addition and non-familiar groups. 

 Understand the definition of a group: Define and provide EXs of a group, 

emphasizing the four key properties (closure, associativity, identity element, and 

inverse element). 

 Define subgroups and identify EXs of subgroups within larger groups. 

 

Structure 

11.1  Finite Abelian Groups  

11.2  Solvable Groups  

11.3  Summary 

11.4  Keywords 

11.5 Self-Assessment questions 

11.6  Case Study 

11.7  References 

 

11.1 Finite Abelian Groups  

 A finite abelian group is a group satisfying the following equivalent conditions: 

1. It is both finite and abelian. 

2. It is isomorphic to a direct product of finitely many finite cyclic groups. 

3. It is isomorphic to a direct product of abelian groups of prime power order. 

4. It is isomorphic to a direct product of cyclic groups of prime power order. 

 

Properties 

As any finite group, a finite abelian group is pure torsion. 

 

Proposition 1:  If a finite Abelian group � has order |�|=� a prime number, then it is 

the cyclic group ℤ�. 

 

https://groupprops.subwiki.org/wiki/Group
https://groupprops.subwiki.org/wiki/Finite_group
https://groupprops.subwiki.org/wiki/Abelian_group
https://groupprops.subwiki.org/wiki/Direct_product
https://groupprops.subwiki.org/wiki/Finite_cyclic_group
https://groupprops.subwiki.org/wiki/Abelian_group_of_prime_power_order
https://groupprops.subwiki.org/wiki/Cyclic_group_of_prime_power_order
https://ncatlab.org/nlab/show/finite+group
https://ncatlab.org/nlab/show/torsion+subgroup
https://ncatlab.org/nlab/show/order+of+a+group
https://ncatlab.org/nlab/show/prime+number
https://ncatlab.org/nlab/show/cyclic+group
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Proposition 2:  If � is a finite Abelian group and �∈ℕ is a prime number that divides 

the order |�|, then equivalently 

 � has an element of order �; 

 � has a subgroup of order �. 

This is Cauchy's theorem restricted to abelian groups. 

 

Theorem (fundamental theorem of finite abelian groups) 

Every finite abelian group is the direct sum of cyclic groups of prime power order (its p-

primary groups). 

 

11.2 Solvable Groups 

A subnormal series of a group G is a finite sequence of subgroups 

 

where Hi is Hi+1's normal subgroup. A series is referred to as normal if every subgroup Hi; is 

normal in G. The number of appropriate inclusions determines the length of a normal or 

subnormal series.  

 

Ex 1 : Any Series of subgroup of an abelian group is a normal series 

Solution 

 

 

If all of the component groups in a subnormal series {Hi} of a group G are simple, that is, if 

none of the factor groups in the series include a normal subgroup, then the series is a 

composition series. If every factor group is simple, then a normal series {Hi} of G is a main 

series. 

  

If every factor group Hi+1/Hi; is abelian and the group G has a subnormal series {Hi}, then 

the group is solvable. When we examine Galois theory and the solution of polynomial 

equations, solveable groups will be crucial.  

https://ncatlab.org/nlab/show/prime+number
https://ncatlab.org/nlab/show/order+of+a+group
https://ncatlab.org/nlab/show/order+of+an+element
https://ncatlab.org/nlab/show/subgroup
https://ncatlab.org/nlab/show/order+of+a+group
https://ncatlab.org/nlab/show/Cauchy%27s+theorem
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11.3 Summary 

A summary outlines the foundational structure and properties of groups in abstract algebra, 

providing a framework for deeper study and application. 

 

11.4 Keywords 

 Group 

 Binary Operation 

 Closure 

 Associativity 

 Identity Element 

 

11.5 Self-Assessment questions 

1. Define a group. What are the four key properties that characterize a group? 

2. What is an Abelian group? Give an Ex. also. 

3. Explain the closure property in the context of groups. 

4. What is the identity element in a group? 

5. How do you determine if a subset of a group is a subgroup? 

6. What is a cyclic group? Provide an EX. 

7. Define a group homomorphism. What is its kernel? 

8. What does it mean for two groups to be isomorphic? 

9. Describe the difference between a left coset and a right coset. 

10. State Lagrange’s Theorem. What is its significance in group theory? 

 

11.6 Case Study 

Think about "Tech Innovators Inc.," a fictitious business that prides itself on its cutting-edge 

goods and exciting workplace culture. Numerous teams inside the organization are engaged 

in various initiatives, and it is crucial to comprehend the ways in which the composition of 

these teams affects their productivity, unity, and overall success. 

 

Question: How do the diversity and skills of group members at Tech Innovators Inc. impact 

the group's performance and creativity? 
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CHAPTER-12 

Group Actions 

 

Learning objectives 

 Explore EXs of group actions, such as permutation actions and matrix actions. 

 Study properties of group actions, including the identity action, inverse action, and 

compatibility with group multiplication. 

 Apply group actions to solve problems in combinatory, geometry, and number theory. 

 

Structure 

12.1  Groups Acting on Sets  

12.2  The Class Equation  

12.3  Summary 

12.4  Keywords 

12.5  Self-Assessment questions 

12.6  Case Study 

12.7  References 

 

12.1 Group acting on Sets 

Let X be a set and G be a group. A (left) action of G on X is a map G x X   X given by  

((g,x)   gx, where 

 

 

Under these considerations X is referred to as a G-set. Take note that there is no requirement 

that X be connected to G in any manner. True, each group G acts on each set X through the 

trivial action ((g,x)→x); yet group actions become more intriguing when the set X is 

connected to the group in some way. 
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Ex 1: 

 

 

Ex 2: 

Let G=D4 be the symmetry group of a square. If X={1,2,3,4} is the set of vertices of the 

square, then we can consider D4 to consist of the following permutations: 

{(1), (13), (24), (1432), (1234), (12)(34), (14)(23), (13)(24)}. 

Solution 

The elements of D4 act on X as functions. The permutation (13)(24) acts on vertex 1 by 

sending it to vertex 3, on vertex 2 by sending it to vertex 4, and so on. It is easy to see that the 

axioms of a group action are satisfied. 

 

12.2 The Class Equation 

A simple kind of counting argument that arises from decomposing a finite G-set into a union 

of its orbits is known as a class equation, class formula, or orbit decomposition formula. 

There are several basic uses of this in group theory. 

 

Statement 

Let G be a group and let A be a G-set (given by a homomorphism G→homset (A,A) of 

monoids, with which is associated an action a:G×A→A). Recall that A is connected in the 

category of G-sets if A is inhabited and the action is transitive; in this case, choosing an 

element aЄA, there is a surjection of G-sets G→A sending 1→a, and this induces an 

isomorphism G/Stab(a) ≅ A where Stab(a) is the stabilizer of a and G/Stab(a) is the G-set 

consisting of left cosets of Stab(a). 

 

More generally, as a coproduct of its linked components, which are commonly referred to as 

the orbits of the action, every G-set A permits a canonical decomposition. Selecting a 

representative element ax inside each orbit x indicates that G-sets are isomorphically 

represented. 
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By taking G and A to be finite and counting elements, we get an equation of the form 

 

 

An EX of this equation is referred to as a class equation. Many beneficial results may be 

obtained by carefully selecting groups G and G-sets A; some EXs of these applications are 

shown below. These results are frequently obtained in conjunction with number-theoretic 

reasoning.  

Notice that reading the class equation equivalently as 

 

it expresses the groupoid cardinality of the action groupoid of G acting on A. 

 

Applications 

Centers of �-groups 

Let p be a prime; recall that a p-group is a finite group whose order is a power of p. A basic 

structural result is the following. 

 

Proposition 1. A non-trivial p-group G has a nontrivial center (G). 

 

It follows by induction that p-groups are solvable, since the center is a normal subgroup and 

the quotient GG) is also a p-group. Since a group obtained from an abelian group by repeated 

central extensions is nilpotent, p-groups are in fact nilpotent 

 

Number of fixed points 

An elementary observation that is frequently useful is that the number of fixed points of an 

involution on a finite set S has the same parity as S. This is a statement about Z(2)-sets; we 
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generalize this to a statement about G-sets for general p-groups G. (Again, a fixed point of a 

G- set is an element whose orbit is a singleton.) 

 

Proposition : If G is a p-group acting on a set A, then 

|A|=|Fix(A) modp. 

As special cases, if there is just one fixed point, then |A|=1modp, and if p divides |A|, then p 

divides |Fix(A)|. 

 

Proof. The class equation takes the form 

 

where p divides each summand over nontrivial orbits on the right, since G is a p-group. Now 

reduce mod p. 

 

12.3 Summary  

Group actions provide a powerful tool for understanding the structure of groups and their 

interactions with other mathematical objects. They play a central role in group theory and 

have diverse applications in many areas of mathematics. 

 

12.4 Keywords 

 Group action 

 Permutation 

 Transformation 

 Set 

 Group 

 

12.5 Self-Assessment questions 

1. What is a group action? 

2. How does a group act on a set? 

3. What are orbits in the context of group actions? 

4. Define stabilizer in a group action. 

5. What is the identity element's role in a group action? 

6. Explain the concept of a transitive group action. 

7. What does it mean for a group action to be faithful? 



56 
 

8. Define a free group action. 

9. What is the orbit-stabilizer theorem? 

10. How are group actions used to study symmetry? 

 

12.6 Case Study 

Symmetry plays a fundamental role in various branches of science and engineering, including 

chemistry, physics, and computer graphics. Understanding the symmetries present in an 

object or structure is crucial for analyzing its properties and behavior. Group actions provide 

a powerful framework for studying symmetry transformations and their applications. This 

case study explores the use of group actions in symmetry analysis, focusing on the 

symmetries of geometric shapes. 

 

Objective: To demonstrate how group actions can be used to analyze the symmetries of 

geometric objects and structures, and to illustrate their practical applications in symmetry 

analysis. 

 

12.7 References 

1. Serre, J. P. (2003). Linear Representations of Finite Groups (Vol. 42). Springer 

Science & Business Media. 

2. Fulton, W., & Harris, J. (2004). Representation Theory: A First Course. Springer 

Science & Business Media. 
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CHAPTER-13 

The Sylow Theorems 

 

Learning objectives 

 Review foundational concepts in group theory, including groups, subgroups, normal 

subgroups, and group homomorphisms. 

 Apply the Sylow Theorems to determine the number and structure of Sylow 

subgroups in various finite groups. 

 Apply the Sylow Theorems to determine the number and structure of Sylow 

subgroups in various finite groups. 

 

Structure 

13.1  The Sylow Theorems  

13.2  Examples and Applications  

13.3  Summary 

13.4  Keywords 

13.5  Self-Assessment questions 

13.6  Case Study 

13.7  References 

 

13.1 The Sylow Theorems  

Assume that p is a prime that divides G, a finite group of order n. In this case, n=p
f
u, where p 

does not divide u. Remember that a p-subgroup of maximal order pf is a Sylow p-subgroup.  

The existence and conjugacy of Sylow p-subgroups, as well as the fact that their number is 

 1modp, are basic facts of group theory.  

 

Existence of Sylow �-subgroups: 

Theorem If G has order n and p
k
 is a prime power dividing n, then there is a subgroup of G 

of order p
k
. 

Proof. First we show that Sylow subgroups exist. We start by observing that if a group H has 

a p-Sylow subgroup P, then so does any subgroup G. To prove this, first note that if we let G 

act on H/P by left translation, then the stabilizer of any element hP is G   hPh
-1

, a p-group 
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since hPh
-1

 is. Then note that since H/P has cardinality prime to p, so must one of its 

connected components G/Stab(ax) in its G-set decomposition 
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Corollary:  If � is a group of order �=�
�

� where � is prime to �, then the 

number �� of �-Sylow subgroups divides �. 

 

Proof. Because � acts transitively on �-Sylow subgroups, the number �� divides |�|=�
�

�. 

We have ���+���=1 for some integers �,. Since �� divides both terms of the left side 

of ����+����=�, it divides �.   

 

The Sylow theorems are routinely used throughout group theory. As a sample application: 

if �, are distinct primes, with �
2≢1mod� and �≢1mod�, then any group of order �

2
� is 

abelian. (For EX, a group of order 2023=7⋅ 17
2
 must be commutative.) 

 

We have ��|�, but ��≠�, so ��=1. Arguing similarly we 

have ��|�
2
 but ��≠� and ��≠�

2
, so ��=1. The �-Sylow subgroup � of order �

2
 and 

the �-Sylow subgroup � of order � are both abelian. �∩�={1} since �,� are relatively 

prime, and �,� are normal subgroups of � since ��,�� are both 1. It follows that �� is a 

subgroup of order �
2
�, hence ��=�. Thus to prove � abelian, it suffices to show that 

if �∈� and �∈�, then � and � commute, i.e., ���
−1

�
−1

=1. But by normality of �, the 

element (���
−1

)
 −1

 belongs to �; similarly, the element (��
−1

�
−1

) belongs to �, and 

so ���
−1

�
−1∈�∩�={1}.  

 

13.2 EXs and Applications 

Example 1 : 

We may ascertain that A5 has subgroups of orders 2, 3, 4, and 5 by applying the Sylow 

Theorems. The orders of A5's Sylow p-subgroups are 3, 4, and 5. The number of Sylow p-

subgroups As is precisely given by the Third Sylow Theorem. 

 

Solution 

There are either one or six Sylow 5-subgroups in A5, as the number of Sylow 5-subgroups 

must divide 60 and also be congruent to 1(mod5). Every subgroup of Sylow 5 is conjugate. If 

there was just one Sylow 5-subgroup, it would be a normal subgroup of As as it is conjugate 

to itself. This is not conceivable since As has no normal subgroups; hence, we have identified 

exactly six unique Sylow 5-subgroups of A5. 
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Application 

We can demonstrate a number of helpful finite group conclusions thanks to the Sylow 

Theorems. If certain assumptions hold, we may frequently draw a lot of conclusions about 

groups of a certain order using them. 

 

Theorem 

If p and q are distinct primes with p<q, then every group G of order pq has a single subgroup 

of order q and this subgroup is normal in.G. Hence, G cannot be simple. Furthermore, if  

q ≢ 1(modp), then G is cyclic. 

 

Ex 2: 

Every group of order 1515 is cyclic. 

Solution 

This is true because 15=5.3 and 5 ≢1(mod3) 

 

13.3 Summary 

The Sylow Theorems are vital tools in group theory, providing deep insights into the 

structure and properties of finite groups. They are essential for anyone studying abstract 

algebra and play a significant role in various mathematical proofs and applications. 

 

13.4 Keywords 

 Sylow Theorems 

 Sylow p-subgroup 

 Prime order 

 Conjugate subgroups 

 Group theory 

 

13.5 Self-Assessment questions 

1. What do The Sylow Theorems state? 

2. What is a Sylow p-subgroup? 

3. How many Sylow p-subgroups are there in a finite group? 

4. What is the significance of conjugacy in the context of The Sylow Theorems? 

5. Can you explain the divisibility condition in the third Sylow Theorem? 
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6. How do The Sylow Theorems contribute to the classification of finite groups? 

7. What is the role of The Sylow Theorems in proving the simplicity of certain groups? 

8. How are The Sylow Theorems applied in counting subgroups within a finite group? 

9. What is the connection between The Sylow Theorems and group actions? 

10. Can you provide an EX of how The Sylow Theorems are used to analyze the structure 

of a specific group? 

 

13.6 Case Study 

The Sylow Theorems, a fundamental set of results in group theory, provide insights into the 

structure of finite groups. Named after the Norwegian mathematician Ludwig Sylow, these 

theorems offer powerful tools for analyzing group composition and classification. This case 

study explores the application of The Sylow Theorems in understanding the structure of finite 

groups and solving problems in various mathematical contexts. 

 

Objective: To demonstrate the practical significance of The Sylow Theorems by applying 

them to analyze the structure of finite groups and solve specific problems related to group 

theory. 

 

13.7 References 

1. Hungerford, T. W. (1974). Algebra. Springer. 

2. Dummit, D. S., & Foote, R. M. (2004). Abstract Algebra (3rd ed.). John Wiley & 

Sons. 
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CHAPTER-14 

Rings 

 

Learning objectives 

 Understand the concept of ideals, including left ideals, right ideals, and two-sided 

ideals, and their role in ring theory. 

 Apply ring theory concepts to solve problems in various fields such as number theory, 

algebraic geometry, and cryptography. 

 Develop the ability to construct and understand proofs related to rings and their 

properties. 

 

Structure 

14.1  Rings  

14.2  Integral Domains and Fields  

14.3  Ring Homomorphisms and Ideals  

14.4  Summary 

14.5  Keywords 

14.6  Self-Assessment questions 

14.7  Case Study 

14.8  References 

 

14.1 Rings 

Let R be a non-empty set and let addition (+) and multiplication (.) be two binary operations 

defined on it. In the event that the following criteria are met, R is considered to constitute a 

ring with respect to addition (+) and multiplication (.): 

1. (R,+) is a commutative group, or an abelian group. 

2. The semigroup (R.) 

The left distributive law a (b+c) = a.b + a.c and the right distributive property (b+c).a = b.ac.a 

hold for any three items a, b, and c  Є R.  

 

Therefore a non- empty set R is a ring w.r.t to binary operations + and . if the following 

conditions are satisfied. 

1. For all a, b Є R, a+b Є R, 
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2. For all a, b, c Є R a+(b+c)=(a+b)+c, 

3. There exists an element in R, denoted by 0 such that a+0=a for all a R 

4. For every a Є R there exists an y Є R such that a+y=0. y is usually denoted by -a 

5. a+b=b+a for all a, b Є R. 

6. a.b Є R for all a, b Є R. 

7. a.(b.c)=(a.b).c for all a, b, c Є R 

8. For any three elements a, b, c Є R a.(b+c) =a.b + a.c and (b+c).a =b.ac.a. And the ring 

is denoted by (R, +, .). 

 

Ex 1: (Z, +) is a commutative group .(Z, .) is a semi-group. The distributive law also holds. 

So, ((Z, +, .) is a ring. 

 

Ex 2 :The set S = {0, 1, 2, 3, 4} is a ring with respect to operation addition modulo 5 & 

multiplication modulo 5. 

 

14.2 Integral Domains and Fields 

Let's review a few definitions quickly. If � is a nonzero element in a commutative ring �, 

and � is a zero divisor of � if �∈� is some nonzero element such that ��=0. If there are 

no zero divisors for a commutative ring with identity, it is referred to as an integral domain. 

We refer to an element � as a unit if it has a multiplicative inverse and is a member of a ring 

� with identity. R� is referred to be a division ring if each nonzero element in it is a unit. A 

field is a commutative division ring. 

 

Ex 3: 

 

Solution 
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Ex 4: 

The set Q(√2)=(a+b√2:a,bEQ} is a field. The inverse of an element a+b√2 in Q(√2) is 

Solution 

(a/(a
2
-2b

2
))+(-2b√2/a

2
-2b

2
). 

We have the following alternative characterization of integral domains. 

 

Theorem 

Every finite integral domain is a field. 

Proof 

 

 

We write r+……..+r (n times) as nr for any nonnegative integer n and any element r in a ring 

R. A ring R's characteristic is defined as the smallest positive number n that ensures nr=0 for 

every r Є „  R. In the event that such an integer is nonexistent, R's characteristic is defined as 

0.We'll refer to R by its feature. 

 

Ex 5: 

For every prime p, Zp is a field of characteristic p. 

Solution 

According to Proposition, Zp is a field since each nonzero element has an inverse. Since the 

order of every nonzero element in the abelian group Zp equals p, if an is any nonzero element 

in the field, then pa=0. 

 

Theorem 

The characteristic of an integral domain is either prime or zero. 
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Proof 

 

 

14.3 Ring Homeomorphisms and Ideals 

Let � and �′ be rings and let �:�↦�′ is called a ring homomorphism and � an ideal of �. 

Prove that [�] is an ideal of [�], and now we have take an example to show that [�] need not 

be an ideal of �′. 

Let �′ be an ideal of either [�] or R', and show that �
−1

[�′] is an ideal of R. 

I just started learning ideals so I am having a lot of trouble with this. I know that the kernel 

of � is an ideal, but I don't know how I can use this. 

In order to show that (�) is an ideal we must show that it is an additive group and closed 

under multiplication in (�) 

 

Showing (�) is an additive group 

Identity 

So as 0∈� and � is a ring homomorphism we have that (0)=0∈�(�) 

 

Closure 

Now take �,∈�(�) then by definition of �(�) there must exists �,�∈� such 

that �(�)=� and �(�)=�. Now as � is an ideal we have that �+�∈� and 

so �(�+�)∈�(�), then as � is a ring homomorphism we have 

that �(�+�)=�(�)+�(�)=�+�∈�(�). 

 

Inverses 

If we have �∈ (�) then by definition there must be an �∈� such that �(�)=� now as � is 

an ideal we have that �
−1∈� and so �(�

−1
)∈�(�). Now as � is a ring homomorphism we 

have that (�
−1

) =(�)
−1

=�
−1∈�(�) 

So we have that (�) is an additive subgroup of (�) 



66 
 

Now to show that it is an ideal we have to show that if we 

have �∈ (�) then ��(�) �(�) and �(�)� �(�) 

Showing (�) is closed under multiplication of (�) 

Now if�∈  (�) then there must be an �′∈� such that (�′)=� 

Then as 𝑟′� � we have that (�′�) =(�′)�(�)  �(�) (same argument for � on the right) 

 

Ex of image of an ideal is not an ideal 

We can define the inclusion map �:�→� and then take an ideal in � say 3� then f (3�) is 

not an ideal in �. 

Suppose that it was, then noting that 1∉ (3�). But by the definition of ideal we must 

have, 1/3∈Q, (1/3) ×3∈ (3�) which gives a contradiction. 

Note: as � is a field then it has only the two trivial ideals so it follows directly from this. 

 

14.4 Summary 

Overall, ring theory provides a unifying framework for studying a wide range of algebraic 

structures and their applications across mathematics and beyond. 

 

14.5 Keywords 

 Ring 

 Commutative Ring 

 Ring with Unity 

 Division Ring 

 Field 

 

14.6 Self-Assessment questions 

1. What is a ring in abstract algebra? 

2. Define a commutative ring. 

3. What is the identity element in a ring with unity? 

4. Give an EX of a division ring. 

5. What is an ideal in a ring? 

6. Explain the difference between a left ideal and a right ideal. 

7. What is a quotient ring? 

8. Define a ring homomorphism. 
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9. What is the kernel of a ring homomorphism? 

10. Give an EX of a polynomial ring. 

 

14.7 Case Study 

Cryptography is the science of securing communication. Modern cryptographic systems often 

rely on complex mathematical structures, including ring theory. This case study explores how 

ring theory is applied in cryptographic algorithms, specifically focusing on the construction 

and analysis of cryptographic schemes using polynomial rings. 

 

Objective: To understand the role of ring theory in designing secure cryptographic 

algorithms, particularly those based on polynomial rings, and to explore their application in 

public-key cryptography. 

 

14.8 References 

1. Herstein, I. N. (1999). Abstract Algebra (3rd ed.). John Wiley & Sons. 

2. Hungerford, T. W. (2003). Algebra (Graduate Texts in Mathematics, Vol. 73). 

Springer. 
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